Header
 
Login
 

Privatsphäre-Einstellungen

Wir verwenden Cookies auf unserer Website. Einige von ihnen sind unerlässlich, während andere uns helfen, diese Website und Ihre Erfahrungen zu verbessern.

Notwendig Statistik Marketing
Alle auswählen
Auswahl bestätigen
Weitere Einstellungen

Hier finden Sie eine Übersicht aller verwendeten Cookies. Sie können ganzen Kategorien Ihre Zustimmung geben oder weitere Informationen anzeigen und bestimmte Cookies auswählen.

Alle auswählen
Auswahl bestätigen
Notwendig Cookies
Wesentliche Cookies ermöglichen grundlegende Funktionen und sind für die ordnungsgemäße Funktion der Website erforderlich.
Statistik Cookies
Statistik-Cookies sammeln anonym Informationen. Diese Informationen helfen uns zu verstehen, wie unsere Besucher unsere Website nutzen.
Marketing Cookies
Marketing-Cookies werden von Werbekunden oder Publishern von Drittanbietern verwendet, um personalisierte Anzeigen zu schalten. Sie tun dies, indem sie Besucher über Websites hinweg verfolgen
Zurück

Ihr Suchergebnis

Sie recherchieren derzeit unangemeldet.
Melden Sie sich an (Login) um den vollen Funktionsumfang der Datenbank nutzen zu können.
Sie suchen in allen Bereichen und nach dem Autor Yaqoubi S.

In der Rubrik Zeitschriften haben wir 2 Beiträge für Sie gefunden

  1. Merken

    Dry powder inhalation of Celecoxib nanoparticles

    Rubrik: Originale

    (Treffer aus pharmind, Nr. 11, Seite 1652 (2015))

    Yaqoubi S | Barzegar-Jalali M | Adibkia K | Hamishehkar H

    Dry powder inhalation of Celecoxib nanoparticles / Formulation and in-vitro characterization · Yaqoubi S, Barzegar-Jalali M, Adibkia K, Hamishehkar H · 1Biotechnology Research Center and Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. und 2Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. und 3Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
    Literature [3]Haynes A, Shaik MS, Chatterjee A, Singh M. Evaluation of an Aerosolized Selective COX-2 Inhibitor as a Potentiator of Doxorubicin in a Non-Small-Cell Lung Cancer Cell Line. Pharmaceutical research. 2003;20(9):1485–1495. [4]Reck M, Gatzemeier U. Chemotherapy in stage-IV NSCLC. Lung cancer. 2004 Aug;45 Suppl 2:S217-222. PubMed PMID: 15552802. [5]Leahy M, Ornbrg RL, Wang Y. Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo. Cancer Res. 2002;62:625–631. [6]Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000 (60):1306–1311. [7]Fulzele SV, Chatterjee A, Shaik MS, Jackson T, Singh M. Inhalation delivery and anti-tumor activity of celecoxib in human orthotopic non-small cell lung cancer xenograft model. Pharmaceutical research. 2006 Sep;23(9):2094–2106. PubMed PMID: 16902813. Pubmed Central PMCID: 2902545. [8]Hida T, Kozaki KI, Muramatsu H. Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin Cancer Res. 2000;6:2006-2011. [9]Hida T, Leyton J, Akheja AN. Nonsmall cell lung cancer cyclooxygenase activity and proliferation are inhibited by non-steroidal antiinflammatory drugs. Anticancer Res. 1990;18:775–782. [10]Shishodia S, Koul D, Aggarwal BB. Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates TNF-induced NF-kappa B activation through inhibition of activation of I kappa B alpha kinase and Akt in human non-small cell lung carcinoma: correlation with suppression of COX-2 synthesis. J Immunol. 2004;173:2011–2022. [11]Brophy J. Celecoxib and cardiovascular risks. Expert Opin Drug Saf 2005;4:1005–1015. [12]Solomon SD, McMurray JJV, Pfeffer MA. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. New Engl J Med. 2005;352:1071–1080. [13]Claus S, Weiler C, Schiewe J, Friess W. How can we bring high drug doses to the lung? Euro J Pharma Biopharm. 2014;86(1):1–6. [14]Beck-Broichsitter M, Merkel OM, Kissel T. Controlled pulmonary drug and gene delivery using polymeric nano-carriers. Journal of controlled release: official journal of the Controlled Release Society. 2012 Jul 20;161(2):214–224. PubMed PMID: 22192571. [15]Emami J, Pourmashhadi A, Sadeghi H, Varshosaz J, Hamishehkar H. Formulation and optimization of celecoxib-loaded PLGA nanoparticles by the Taguchi design and their in vitro cytotoxicity for lung cancer therapy. Pharmaceutical development and technology. 2014 May 19:1–10. PubMed PMID: 24841045. Epub 2014/05/21. [16]Nassimi M, Schleh C, Lauenstein HD, Hussein R, Hoymann HG, Koch W, et al. A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur J Pharm Biopharm. 2010;75(2):107–116. [17]Shid RL, Dhole SN, Kulkarni N, Shid SL. Nanosuspension: A Review. Int J Pharm Sci Rev Res. 2013;20(1):98–106. [18]Emami J, Hamishehkar H, Rouholamini Najafabadi A, Gilani K, Minaiyan M, Mahdavi H, et al. Particle size design of PLGA microspheres for potential pulmonary drug delivery using response surface methodology. J Microencapsul. 2009;26:1–8. [19]Newman SP. Aerosol generators and delivery systems. Respir Care. 1991;36:939–951. [20]Thompson PJ. Drug delivery to the small airways. Am J Respir Crit Care Med. 1998;157:S199–S202. [21]Hamishehkar H, Emami J, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method. Colloids and surfaces B, Biointerfaces. 2009;74(1):340–349. [22]Ghaderi S, Ghanbarzadeh S, Mohammadhassani Z, Hamishehkar H. Formulation of Gammaoryzanol-Loaded Nanoparticles for Potential Application in Fortifying Food Products. Adv Pharm Bull 2014;4:549–554. [23]Malkani A, Date AA, Hegde D. Celecoxib nanosuspension: single-step fabrication using a modified nanoprecipitation method and in vivo evaluation. Drug Deliv and Transl Res. 2014;87(6):123–128. [24]Nagarsenker MS, Joshi MS. Celecoxib-cyclodextrinesystems: characterization and evaluation of in vitro and in vivo advantage. Drug development and industrial pharmacy. 2005;31:169–178. [25]Makino K, Yamamoto N, Higuchi K. Phagocytic uptake of polystyrene microspheres by alveolar macrophages: effects of the size and surface properties of the microspheres. Colloids Surf Biointerfaces. 2003;27:33–39. [26]Hoet P, Bruske-Hohlfeld I, Salata OV. Nanoparticles, known and unknown health risks. J Nanobiotechnol 2004;2:1–15. [27]Joshi M, Misra A. Dry powder inhalation of liposomal Ketotifen fumarate: formulation and characterization. International journal of pharmaceutics. 2001 Jul 31;223(1–2):15–27. PubMed PMID: 11451628. [28]Busoquillon C, Lombry C, Preat V, Vanbever R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. Journal of controlled release: official journal of the Controlled Release Society. 2001;70(329–339). [29]Wauthoz N, Amighi K. Phospholipids in pulmonary drug delivery. Eur J Lipid Sci Technol. 2014;116:1–15. [30]Yang MY, Chan JG, Chan HK. Pulmonary drug delivery by powder aerosols. Journal of controlledrelease: official journal of the Controlled Release Society. 2014 Nov 10;193:228–40. PubMed PMID: 24818765. [31]Nguyen XC, Herberger JD, Burkel PA. Protein powders for encapsulation: a comparison of spray-freeze drying and spray drying of darbepoetin alfa. Pharmaceutical research. 2004;21:507–514. [32]Bosquillon C, Rouxhet PG, Ahimou F, Simon D, Culot C, Préat V, et al. Aerosolization properties, surface composition and physical state of spray-dried protein powders. Journal of controlled release: official journal of the Controlled Release Society. 2004;99:357–367. [33]Yang W, Peters JI, Williams RO. Inhaled nanoparticles a current review. International journal of pharmaceutics. 2008 May 22;356(1-2):239–247. PubMed PMID: 18358652. [34]Eerdenbrugh Bv, Froyen L, Humbeeck Jv, Martens JA, Augustijns P, Mooter Gvd. Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion. European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences. 2008 Sep 2;35(1–2):127–135. PubMed PMID: 18644441. [35]Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. The Journal of pharmacy and pharmacology. 2010 Nov;62(11):1569–1579. PubMed PMID: 21039542. [36]Hamishehkar H, Emami J, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H, et al. Effect of carrier morphology and surface characteristics on the development of respirable PLGA microcapsules for sustained-release pulmonary delivery of insulin. International journal of pharmaceutics. 2010 Apr 15;389(1–2):74–85. PubMed PMID: 20085803. Epub 2010/01/21. eng. [37]Rowe RC, Sheskey PJ, Weller PJ. Handbook of pharmaceutical excipients 2003. [38]Oberoi M, Patel KS, Sahu K, Choudhry P, Jain P, Malhotra M, et al. Liposome: A novel aerosol carrier of doxophylline in treatment of chronic asthma & chronic obstructive disease. Int J Biomed Res. 2012;3(7):351–361. [39]Kawakami K, Hasegawa Y, Zhang S, Yoshihashi Y, Yonemochi E, Terada K. Low-Density Microparticles with Petaloid Surface Structure for Pulmonary Drug Delivery. Journal of pharmaceutical sciences. 2014;103(4):1309–13.

  2. Merken

    Development of Carrier Free Montelukast Dry Powder Inhalation Formulation

    Rubrik: Originale

    (Treffer aus pharmind, Nr. 10, Seite 1535 (2015))

    Faramarzi P | Haririan I | Ghanbarzadeh S | Yaqoubi S | Hamishehkar H

    Development of Carrier Free Montelukast Dry Powder Inhalation Formulation / Faramarzi et al. • Montelukast Dry Powder Inhalation · Faramarzi P, Haririan I, Ghanbarzadeh S, Yaqoubi S, Hamishehkar H · 1Department of Pharmaceutics, School of Pharmacy, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran und 2Biomaterials Research Center (BRC), Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran und 3Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran und 4Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran und 5Biotechnology Research Center and Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran und 6Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
    Zwar gibt es verschiedene Ansätze für die Behandlung von Lungenerkrankungen, Trockenpulverinhalatorsysteme zur pulmonalen Verabreichung haben jedoch vielversprechendes Potenzial als alternative Darreichungsform zur oralen Verabreichung des Arzneimittels. Partikeltechnik zur pulmonalen Verabreichung kann durch Änderung der Sprühtrocknungsbedingungen und Formulierungsparameter, die Einfluss auf die Eigenschaften und Morphologie der Teilchen haben, durchgeführt werden. In der vorliegenden Studie wurden Montelukast-Natrium-Mikropartikel unter Verwendung der Sprühtrocknungstechnik zubereitet, um ihren lungengängigen Anteil und, infolgedessen, ihre systemische Bioverfügbarkeit zu verbessern. In dieser Studie wurden die Mikropartikel mit optimierten Prozessparametern hergestellt und wurden mit Rasterelektronenmikroskop, Pulver-Röntgen-Diffraktometer und Next-Generation-Impactor für die Aerosolisierungseffizienz und die unterschiedlichen physikochemischen Parameter, einschließlich Morphologie, Feinpartikelfraktion (FPF), ...